
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS Vol. 9, No. 5-6, May – June 2015, p. 803 - 807

An efficient parallel prefix matching architecture using

Bloom filter for multi-bit trie IP Lookup algorithm in

FPGA

K. SARAVANAN

a,*
, A. SENTHILKUMAR

a
Department of electronics and communication, The Christian Institute for Technical education, Tamilnadu, India

Professor, Department of Electrical and Electronics Engineering, Dr. Mahalingam College of Engineering and

Technology, Pollachi, India

The major design challenge in Internet routers is the IP lookup, which is essential for packet forwarding. The Longest Prefix
Matching (LPM) is used to obtain the best match for the incoming packets, which increases the time consumption of IP
lookup. Current high speed link rate requires faster IP lookup. Due to the continuous increase in internet users, the routing
table has to incorporate more routing entries for effective packet forwarding which results in memory usage increase.
Various hardware based IP lookup mechanism using either TCAM or SRAM are available in use. TCAM–based solutions
supports faster IP lookup with the high hardware cost and high power consumption compared to SRAM-based devices. The
SRAM-based solutions require more memory access for IP lookup. This paper proposes parallel prefix matching using
bloom filter for multi-bit trie based IP lookup, implemented in FPGA. The proposed method achieves faster IP lookup with
single memory access. Comparison of implementation results shows that the proposed algorithm achieves 13.04 %
increase in throughput and 27 times lesser memory usage.

(Received March 10, 2015; accepted May 7, 2015)

Keywords: Longest Prefix Matching (LPM), Multi-bit trie, SRAM based IP lookup, Packet Forwarding

1. Introduction

Continuous increase in the number of users, network

and various domains connected to the Internet; has

exponential growth of the Internet as an outcome. The

network traffic flow is increased due to this large number

of users with wide range of multimedia applications. In

order to maintain the quality of the Internet without

degradation, the router has to consider three main factors

like: link speeds, router data throughput and packet

forwarding rates [1].The high speed optical transmission

rates of fiber optics provide faster transmission link rates

and the current switching technology achieves high data

throughput. Recently, the router has achieved link rates of

100Gbps with data throughput of 312.5 Mpps (million

packets per second) for packet size of 40 bytes [2]. In

order to cope up with this link rate and data throughput,

the router has to adapt faster packet forwarding which

requires efficient packet processing algorithm.

The IP lookup process is the main step in packet

forwarding; in which the router performs lookup for the

incoming packet’s destination address in the routing

database to find the appropriate outgoing link for the

packet. The IPv4/ IPv6adapts Classless Inter-Domain

Routing (CIDR) [3], which uses Longest Prefix Matching

(LPM) to obtain the best matching prefix and it identifies

corresponding next hop port for the matching prefix to

forward the packet through that link.IPv4, IPv6consistof

32 and 128 bits packet address length respectively, the

packet forwarding based on Longest Prefix Matching

(LPM) use this address length for millions of packets. The

vast number of internet user’s result in routing table

expansion which increases the search space for destination

address in the routing table. The routing table expansion in

terms of address length and number of prefixes requires

proper IP lookup mechanism to achieve higher packet

forwarding rate.

For IP lookup the hardware-based solutions are

divided in to two main categories, they are Ternary

Content Addressable Memory (TCAM) and Static

Random Access Memory (SRAM). Due to the parallel

hardware architecture in TCAM, it provides higher lookup

rate than SRAM. The major disadvantage of TCAM based

hardware solutions are high cost of devices and higher

power consumption [4] [5].Further incremental updates in

the routing table for TCAM-based solutions require

number of memory operations as same as the prefix

length. The SRAM based solutions has very less power

consumption compared to TCAM devices [6]. Due to high

memory access in SRAM based IP lookup, the power

consumption is increased. Recently, SRAM based

algorithmic IP lookup solutions are introduced to reduce

the memory access in SRAM-based IP lookup solutions.

In this paper SRAM based IP Lookup using Bloom filter is

proposed for efficient IP lookup.

804 K. Saravanan, A. Senthilkumar

2. Related works

Recently several algorithm based approaches are

proposed for IP lookup solutions. Binary tries is the basic

algorithmic solutions for the IP lookup. Binary tries

provides simple and trouble-free implementations for IP

lookup with good support for incremental updates and

scalability [6]. A Binary trie adopts tree-based data

structure; the branching is based on the prefix bits, where

each branch leads to two child nodes [7]. In uni-bit trie,

only one bit is used for branch decisions, the maximum

number of lookup required is same as the prefix length. In

order to overcome it, multiple bits are used to direct the

branching decisions. The number of bits used in each

branch decisions is called as stride length. The stride

length is varied to build an effective multi-bit trie. There

are various multi-bit algorithm available [8-11]; such as

tree bitmap [12] [13], shape-shifting trie [14], priority tries

[15-16], binary decision diagram [17] and trie partitioning

algorithm [18]. Various bloom filter based

implementations for these algorithmic IP lookup

mechanisms are proposed [19-22]. In [19], parallel bloom

filter based architecture is proposed for the IP lookup

mechanism. In [23], fixed stride tries based longest prefix

matching is used for faster IP lookup. In [25-26], SRAM

based pipeline architecture is used for reducing the

memory access.

3. Bloom filter

The bloom filter is bit vector of size m to represent a

set of n data elements X = {x1,x2, -- xn}. The bloom filter

has k hash functions {h1,h2, --- hk} to represent the bloom

filter such that the hashed value are used as index for bit

vector. For entry of an element, the bit position pointed by

the k hashed value is set to one. To process the

membership queries, the bit locations pointed by all the

hashed values are checked. If all the bit locations value is

set to one, then it will have possibilities for False Positive

Error. If anyone bit locations are not set, then it is

definitely a False Negative. The False Positive probability

is calculated by

 (1)

The optimal value of k is given as

 (2)

Let x, y are two elements represented in bloom filter, with

three hash functions. Fig. 1 shows the bloom filter

representation for the two elements. The hashed value for

the two elements has collisions at the sixth bit location.

0 1 0 1 1 1 0 0 1 0 0

X Y

m 0

Fig. 1. An Example for bloom filter.

The false positives of a given n elements can be

reduced by the appropriate selection of values for m and k,

the value m is quite large compared to n. Further for given

m/n ratio value, the False Probability is reduced with

increase in value of k. Since the different elements bits are

overlapped in the bloom filter. For a dynamic

environment, it is not possible to delete an entry in the

bitmap. In order to overcome it, the counting bloom filter

came to existence. The counting bloom filter has a small b

bit counter for each location in the bloom filter; to track

the number of entries corresponded to that particular bit

location. These counters will affect the space efficiency

achieved by the bloom filter.

4. Proposed method

In CIDR, the routing information called routing

update is exchanged between routers; which was entered

in to the routing table. The routing information exchange

takes place often, in order to route the packets effectively.

In this paper, scalable bloom filter architecture is proposed

for multi-bit trie based IP lookup algorithm. The proposed

bloom filter based architecture supports faster IP lookup

and dynamic insertion and deletion of prefixes. It uses

fixed-stride multi-bit trie without leaf pushing. The nodes

at each level have same stride length. Thus, a single bloom

filter is employed for each node and the hashing is

performed in parallel for all the bloom filters. A small

counter is employed for each bit location of bloom filter at

all levels. The counter supports dynamic routing update in

the routing table through insertion and deletion of prefixes.

The proposed algorithm employs an efficient update

manager to select the LPM for the input IP address from

all the bloom filter output and to include the routing

update.

Fig. 2 shows the FPGA implementation of proposed

IP lookup algorithm. Since the number of prefixes at each

level is different, the proposed algorithm varies the bloom

filter size correspondingly. In normal bloom filter based IP

lookup algorithm, the bloom filter is included for all

possible length of prefix. Here, the prefix at higher length

includes prefixes from previous length. Thus, each bloom

filter has to represent 0 – 2
n
 entries, where n denotes the

prefix length of input IP address.

 -

--

In
p
u
t

In
te

rf
ac

e

Multi-bit trie

IP look up

using Bloom

filter

O
u
tp

u
t

In
te

rf
ac

e

S1

S2

Sn

SRAM

[Prefix,

next hop]

Prefix

address

Next hop

Splitted

Input IP

address

Parallel

hashing

Bloom

filter (On-

chip

memory)

Table

manager

Counters

Bloom

filter

output

Input

packets

Fig. 2. FPGA implementation of proposed IP lookup

algorithm.

An efficient parallel prefix matching architecture using Bloom filter for multi-bit trie IP Lookup algorithm in FPGA 805

In case of multi-bit trie, the prefix range at each stride

level does not include the bits from the previous range.

The bloom filter represents only the prefix entries in the

range of prefix 0 – 2
s
, where s denotes the stride length.

Due to minimum entries in each bloom filter, the proposed

algorithm uses small bloom filter size with reduced False

Positive Probability FPR at each level. Table 1 shows an

example for prefix set. Fig. 3 shows the detailed

implementation of proposed algorithm for Table 1.

Table 1. Prefix set.

Prefix Value

P1 0*

P2 1*

P3 10*

P4 110*

P5 1000*

P6 11001*

P7 100000*

P8 1000000*

P1

P2

P3

P4

00

01

10

11

P5

P5

000

001

010

011

100

101

110

111 P6

000

001

010

011

100

00 101

110

111

P8

P7

00

01

10

11

Input [0-1]

IP address

Input [2-5]

IP address

Input [6-7]

IP address

0

1

m1

0

1

m2

m1

0

H1

Hk1

H1

H1

Hk2

Hk3

BF1

BF2

BF3

Counter C1

Counter C2

Counter C3

L1

L2

L3

Multi-bit Trie

Architecture
IP address ranges

Bloom

Filter
Counters Levels

Fig. 3. Bloom filter representation for the prefix set.

5. Insertion and deletion of prefixes

The update manager performs the update operation

from all the bloom filter output for the input IP address.

The update operation includes deals with updating the

counter. The update operation is performed in any

particular level when there is no matching prefix at the

next level. For prefix matching the child nodes in i
th

level,

if next level has no matching prefix then the update

operation is performed at the same i
th

 level. Otherwise, the

update operation is performed at the new level (i + j),

where j is the new matching level with no matching prefix

at the next level. In insertion, the update manager

increments the counter for the highest matching prefix

level. In deletion, the update manager decrements the

counter for the highest matching prefix level. In case of

incrementing, if the counter value changes from 0 to 1, the

corresponding bit in the bloom filter are changed to one. In

case of decrementing, if the counter value changes from 1

to 0, the corresponding bit in the bloom filter are changed

to zero.

6. IP Lookup operation

During the IP lookup operation, the hashing is

performed in parallel for all the prefixes of input IP

address based on the stride length of the levels. The update

manager selects the matching prefix at higher level using

the novel selection mechanism. The update manager

selects the highest matching prefix level from the all

bloom filter output and traces the table entry from this

node to the root node. If a link exists between all the

previous levels then it consider a next hop address exist for

the input IP address. The next hop address is retrieved

from the SRAM. In order to fetch the next-hop address

from SRAM, new address value is generated from input IP

address. The new address value includes input IP address

value up to the highest matching prefix and appending

zero for remaining address value.

7. Performance evaluation

The proposed algorithm is implemented in Altera

Cyclone IV FPGA. The bloom filter is implemented in on-

chip memory to support faster lookup and the

corresponding next-hop address is accessed from SRAM

memory. For implementation, the proposed algorithm use

operating frequency of 150MHz. The external SRAM

works in operating frequency of 300MHz. To evaluate the

proposed algorithm, the routing entries of rrc11 are used

[29]. From [24], the average number of prefixes for prefix

length in the range of 21 to 24 is approximately 70%. In

the multi-stride trie, for higher prefix length ‘l’ the change

in bits are evenly distributed among the lower stride level

corresponds to (l-1) bits. Thus, even for higher distribution

of prefixes in particular prefix length, the number of

entries in the bloom filter increases linearly at lower

levels. In the proposed algorithm, stride length of 2, 3are

used for the levels (1 to 24) and stride length of 4is used

for the levels (25 to 32).

The SRAM based IP lookup solutions has faster

memory access with less power consumption. In order to

obtain the LPM for input IP address, it requires more

number of memory accesses which increases the power

consumption enormously. The proposed bloom filter based

IP lookup supports parallel prefix matching for all the

entries of routing table. Due to this, a single memory

access is enough to fetch the proper next-hop address with

806 K. Saravanan, A. Senthilkumar

reduced on-chip memory usage. As the bloom filter based

implementations has False Positive Probability (FPR), the

reduced memory access overcomes it. In [27], the SRAM-

based linear pipeline architecture for IP lookup is used for

low power consumption. This architecture adapts Binary

Tree Search (BST) based IP lookup mechanism

implemented in pipeline architecture. In this method, the

ranges of prefixes having less number of prefixes are

converted to consecutive higher length. This architecture

achieves higher throughput at the cost of large on-chip

memory usage.

In [28],a hash table based reconfigurable architecture

is proposed for the IP lookup mechanism. This

architecture implements the hash table as multi-column

main table with sub table; the prefixes corresponding to

collisions are implemented in the on-chip memory with

remaining prefixes in the SRAM. It has high on-chip

memory usage, even for less number of prefixes due to

Hash table implementation. Table 1 shows the memory

usage of proposed algorithm for different number of

prefixes.

Table 2. Memory usage for various prefixes.

No of Prefixes Memory Usage

100M 162

150M 203

200M 247

250M 293

300M 311

350M 354

400M 397

450M 456

500M 513

Table 2 shows the comparison of implementation

results of proposed algorithm with other existing SRAM-

based IP lookup implementation. Compared to both IP

lookup implementation, the proposed algorithm achieves

the high throughput for more number of prefixes with less

on-chip memory usage. The hardware utilization of the

proposed algorithm is more due to the complexity in IP

lookup. Compared to [27], the proposed algorithm

achieves 27 times less memory usage and 13.04% increase

in throughput. Compared to [28], the proposed algorithm

achieves 14 times less memory usage and 32.74% increase

in throughput.

Table 3. Implementation results of proposed algorithm.

On chip

memory
SRAM LUT

Throughout

(MLPS)
Prefixs

Proposed 314 Kb 4.1MB 37715 391 293K

[27]
473Blocks

(BRAM)
- 16617 340 249K

[28]
254 Blocks

(BRAM)
- 14274 263 80K

The proposed algorithm uses less on-chip memory

with high throughput even for 290k prefixes. Thus the

proposed algorithm suits well for routing table expansion

of 500 million prefixes. Since the proposed algorithm

achieves higher throughput in packet forwarding of 391

MLPS, it supports higher link rate of optical carriers such

as OC-768, OC-1536.

8. Conclusion

In this work, a bloom filter based parallel prefix

matching is proposed for faster and efficient IP lookup.

Due to the single bit representation for prefix

representation in bloom filter, the proposed algorithm

achieves less memory usage. In the proposed algorithm,

the bloom filter occupies the on-chip memory whereas the

actual routing prefixes with next-hop addresses are stored

in the SRAM. Since the parallel prefix matching was done

using bloom filter, a single memory access is required to

access the external SRAM memory. This overcomes the

drawback in SRAM-based IP lookup of higher memory

access. Compared to other existing SRAM-based IP

lookup solutions, the proposed bloom filter based multi-bit

trie architecture achieves high packet forwarding rate with

reduced memory usage.

References

 [1] M. Waldvogel, G. Varghese, J. Turner, B. Plattner,

 Scalable high speed IP routing lookups, in

 Proc.SIGCOMM’97, Cannes, France.

 [2] Verizon offers U.S. 100-Gbps deployment details.

An efficient parallel prefix matching architecture using Bloom filter for multi-bit trie IP Lookup algorithm in FPGA 807

http://www.lightwaveonline.com/articles/2011/09/verizon

offers-us-100-gbps-deployment-details-129650943.html,

2011.

 [3] Y. Rekhter, T. Li. An Architecture for IP Address

 Allocation with CIDR, RFC 1518, 1993.

 [4] IDT Generic Part:

5K72100http://www.idt.com/?catID=58523&genID=75K7

2100.

 [5] David E. Taylor, Washington University Technical

 Report, WUCSE-2004, 2004.

 [6] M. A. Ruiz-Sanchex, E. W. Biersack, W. Dabbous,

 IEEE Network, 15(2), 8 (2001).

 [7] D. Mehta, S. Sahni, Handbook of Data Structures and

 Applications, Chapman and HALL/CRC, 2005.

 [8] T. Kijkanjanarat, H. J. Chao, Proc. IEEE

 GLOBECOM, 2, 1999, pp-1570–1575.

 [9] H. H.-Y. Tzeng, T. Przygienda, IEEE J. Sel. Areas

 Commun, 17(6), 1067 (1999).

[10] W. Eatherton, G. Varghese, Z. Dittia, ACM

 SIGCOMM Computer Communications Review,

 34(2), 97 (2004).

[11] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S.

 Sproull, IEEE J. Sel. Areas Commun., 21(4), 522

 (2003).

[12] H. Song, J. Turner, J. Lockwood, IEEE ICNP, 358

 (2005).

[13] K. Kim, S. Sahni, IEEE Trans. Comput, 56(1), 32

 (2007).

[14] R. Sangireddy, A. K. Somani, IEEE J.Sel. Areas

 Commun, 21(4), 513 (2003).

[15] H. Lim, J. Mun, Proc. IEEE Globecom, 2006, pp-1–5.

[16] H. Lim, C. Yim, E. E. Swartzlander, IEEE Trans.

 Comput, 59(6), 784 (2010).

[17] W. Lu, S. Sahni, IEEE Trans. Comput, 59(12), 1683

 (2010).

[18] S. Dharmapurikar, P. Krishnamurthy, D. Taylor, In

 ACM SIGCOMM, 2003.

[19] T. S. Sarang Dharmapurikar, Praveen Krishnamurthy,

 J. Lockwood, in MICRO 37.

[20] H. Song, S. Dharmapurikar, J. Turner, J. Lockwood,

 SIGCOMM ’05.

[21] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh,

 G. Varghese, SIGCOMM ’06.

[22] V. Srinivasan, G. Varghese, ACM Trans. Comput.

 Syst., 17, 1 (1999).

[23] chttp://bgp.potaroo.net. BGP Routing Table Analysis

 Reports, 2008.

[24] W. Jian, V. K. Prasanna, J. Parallel Distrib. Comput,

 69(9), 778 (2009).

[25] L. D. Carli, Y. Pan, A. Kumar, C. Estan, K.

 Sankaralingam, Proc. SIGCOMM, 2009.

[26] Scalable High Throughput and Power Efficient IP-

 Lookup on FPGA.

[27] H. Fadishei, M. S. Zamani, M. Sabaei, Proc. ANCS

 ’05, 81 (2005).

[28] RIS RAW DATA [Online]. [http://data.ris.ripe.net].

*Corresponding author: saravanantlf@gmail.com

http://www.lightwaveonline.com/articles/2011/09/verizonoffers-us-100-gbps-deployment-details-129650943.html
http://www.lightwaveonline.com/articles/2011/09/verizonoffers-us-100-gbps-deployment-details-129650943.html
http://www.idt.com/?catID=58523&genID=75K72100
http://www.idt.com/?catID=58523&genID=75K72100

